AD=A099 355 WISCONSIN UNIV~MADISON MATHEMATICS RESEARCH CENTER F/6
55:0:!5?‘; :ngglﬁASKFgR :ngLTERRA EQUATION IN HILBERT SPACE, (V) 12/
r KBH GEN =8 0=C
UNCLASSIFIED MRC-TSR-2167 OAAG29-80=C 03:1




@’rechnical Summary %ﬁg‘w\nm
l D

) 'RESOLVENT FORMULAS FOR A
VOLTERRA EQUATION IN HILBERT SPACE,

-

e AL o B
i X

(/M‘ _,,A,(f \

j() iRalph W. Carr
\\ Kenneth B. /Hannsgen \\
e e T e

Tife | @353

ADA099 855

O, N NI T TSR 430

P . -
L N s

4

i ' Mathematics Research Center
“ . University of Wisconsin—Madison

610 Walnut Street
Madison, Wisconsin 53706 #

.5"(.

January 1981 ELECTE
MAY 2 7 1981 ;

{Received August 5, 1980)

u:', Approved for public release
'
L= Distribution unlimited
sponsored by
U. S. Army Research Office and National Science Foundation

P. O. Box 12211 Washington, D.C.
Research Triangle Park

North Carolina 27709 ? A 8 1 5 2 7 O O 2
-




ST T i i T R TR ST SO

..
o
g

UNIVERSITY OF WISCONSIN ~ MADISON
MATHEMATICS RESEARCH CENTER

RESOLVENT FORMULAS FOR A VOLTERRA EQUATION IN HILBERT SPACE

2
Ralph W. Carrl and Kenneth B, Hannsgen

Technical Summary Report #2167

January 1981
ABSTRACT

let y(t,x,f) denote the solution of the Cauchy problem
t
y'(t) + [ [d + a(t-s)]L y(s)ds = £(t), t > 0, y(0) =x ,
2 o < % ~ < p

where 4 > 0 and L is a self-adjoint densely defined linear operator on a ]
Hilbert space H with L >AI. Let U(t)x = y(t,x,0), V=7T1'. By analyzing
a related scalar equation with parameter, we find sufficient conditions on the

® \
kernel a in order that f ||Y(t)LrY||dt < ® (y > 0). These resultsngd
0

certain resolvent formulas can be used to s?udy the asymptotic behavior of the
ﬂﬂ,.\‘n()ff l‘b\{\h\ Y
solution y(t,x,g) as t/f“ch An application to a semilinear integro-partial

differential equation is presented. K

AMS (MOS) Subject Classifications: 45J05, 45M0S5, 45M10
Key Words: Asymptotic, convex, Hilbert space, Integrodifferential Equations,
Self-adjoint Linear Operator, Volterra Equation

Work Unit Number 1 - Applied Analysis

lDepartment of Mathematics and Computer Science, St. Cloud State University, L
St. Cloud, Minnesota 56301.

2 . co . . . .
Department of Mathematics, Virginia Polytechnic Institute and State University,

Blacksburg, Virginia 24061.

Sponsored in part by the United States Army under Contract No. DAAG29-80-C-0041
and by the National Science Foundation under Grant Nos. MCS77-28436 and
MCS78-27618.




\l/ SIGNIFICANCE AND EXPLANATION

The resolvent formula for a nonhomogeneous Volterra integrodifferential
equation enables one to study the behavior of solutions of the equation for
large values of the time variable in terms of general properties of the
forcing terms in the equation. This technique depends on having “"good"
a priori estimates obtained for the resolvent kernel.

When the solution takes its values in a Hilbert space, the resolvent kernel
‘is a function whose values are operators on that space. It is important to
know whether the norm of the resolvent kernel (or of its derivative) is integrable
on ¥0,»). For a class. of equations which includes linear models for the dynamics
of viscoelastic materials, we develop sufficient conditions for the derivative

of the resolvent kernel to be integrable. Resa T ﬁ ]}\ﬁ: s ld qu ~5:§
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RESOLVENT FORMULAS FOR A VOLTERRA EQUATION IN HILBERT SPACE

Ralph W. Carr1 and Kenneth B. Hannsgen2

1. Introduction. We continue our study, begun in [2]), of the nonhomo-

geneous linear equation

t

(1.1) vy'(t) + [ [d + a(t-s)]L y(s)ds = £(t) (t > 0)
o ool -
y(0) =y, € H , '"=asat ,

where L is a positive self-adjoint linear operator defined on a dense sub-
space U of the Hilbert space H. The kernel d + a(t) satisfies

1 + =+ + -+
(1.2) ace LLoc(R fs R) (R = (0p), R =

f0,2)); a is nonincreasing and convex

with a(®) =0 < a(0+) <©, and 4 >0 ,

and f belongs to Bioc(ivu H), the class of locally Bochner integrable
functions from R' to H.
Let u(t,A) denote the solution of the real eqguation
t
(1.3) u'(t) + A [ [d + a(t-s)Ju(s)ds = 0, u(0) = 1 ;
v 0

define v = 3u/dt,

ule) = [ ult,EE, , V(t) = [ v(t,€E,
N R N N R -
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where {gx} is the spectral family corresponding to L. In [2] we established
the resolvent formula

t
(1.4) y(t) = Ult)y, + [ U(t-s)f(s)ds

0

for the solution of (1.1), and we gave sufficient conditions for

[

(1.5) [ lluwr|lat <= .
0

In particular, (1.5) holds if -a' is convex. (See Theorem Aafter Theurem 2.4
below; here and below we use the norm symbol for a space to indicate the operator
norm for linear operators from that space to itself.)
We are principally concerned here with v, the formal derivative of u.

V can be used with (1.4) to express g'(t), and it appears in the alternate
resolvent formula

t
(1.6) y(t) = F(t) + [ V(t-s)F(s)ds

0

for the integrated version of (1.1), that is

t
(1.7) y(t) + [ [(t-s)d + A(t-s)IL y(s)ds = F(t) ,
0
t t
where A(t) = [ a(s)ds, F(t) = / f(s)as.
0 0

Estimate (1.5), with V in place of U, is always false (see Corollary 2.1
below). Our main results, Theorems 2.3 and 2.4, contain the following:

THEOREM 1.1. Let (1.2) hold, and assume that -a' is convex. Then

=-1/2

. [
(1.8) t“Y(t)I:_l’?'” is bounded on R', and [ |[V()LT/¢|lat <= .
0




-

The <onditions of Theorem A for (1.5) do imply
® 1
(1.9) ] Ivierr " lae < = .
0
Estimates (1.8) and (1.9) can be used with (1.4) and (1.6) to study the
asymptotic behavior of y(t) under various assumptions on the forcing term.
A variant of (l.1) is
t
(1.10) z'(t) + [ [a+ a(t-s)] [L z(s) + g(s)lds = £(t) (t > 0)
0

%(0) = Eo ’

with g : R+ + H. Proceeding formally from (1.4) and the formal identity

t
vit) = -f [d + a(t-s)]L U(s)ds ,
5 -~ s
we obtain
t t -1
(1.11) z(t) = Ult)zy + [ U(t-s)E(s)ds + [ V(t-s)L "g(s)ds .
0 0

In Section 3 we state a theorem justifying (1.11), and we use it to study the

semilinear equation

t

(1.12) y'(£) + [ [d+ a(t-s)] [L y(s) + N y(s)lds = £(¢t)
0
Y0 =y,

Here N 1is a nonlinear operator with

(1.13) N(O) =0 ,

sup 8%, =~ N x,llp < e@lix, - x,lip
Hglllpl fix,llp < 8 1

+
where ¢ : (0,0 > R and € » 2 as A+ O,




2 2 2 2 2 1/2 12
Iellg = =l® + Mz <ll?, Uslp = Bel® « 1™260%

We also give an example of an integro-partial differential equation of the
form (1.12), to which our result applies.
The spectrum of L is contained in a closed subinterval of ICH with~-

out loss of generality we take this interval to be [1,#). Then for

(1.14) lveert™| < sup |vie, |2 = v (&)
T 1< Y

||Y(t)£--Y||p v (e .
We shall develop estimates for VY from (1.3) and deduce estimates such as
(1.9) from (1.14).
In Section 2, we state our results from vy; they are proved in Sections
4 through 8. 1In particular, Section 8 contains a correction for the proof of

[2, Lemma 5.2]. We discuss the operator vV and equations (1.11) and (1.12)

in Section 3; proofs follow in Section 9.




2. Statement of results for vy. Throughout this paper, it is assumed

that 4 + a(t) satisfies (1.2). We define

t t

a(t) = [ alsias, a(t) =[ sa(sias ,
0 0

a(n = [ aw)ei™ae z p(v) - ite(n) (1 > 0)
0

(with ¢ and 06 real; note that 3 is continuous),

D(1) = D(t,®) = a(t) - idt ¥, D(1,A) = D(1) + iTA L .

Formally, the Fourier transform of v(t,A) (defined to be zero for t < 0) |is

given by
- _ =~b(1)
(2.1) v(T,A) = D(t, ) '

+ .
so v(*,A) ¢ Ll(ll) if D(t,A) = 0 for some 1. By [4], v(1) > O0; moreover,
¢(t) > 0 (t > 0) unless a(t) is piecewise linear with changes of slope only

at integral multiples of a fixed number t (taken as large as possible) and

o]
T is an integral multiple of 2ﬂ/to. In all other cases, D(t,A) # 0 (1t > 0);
then the hypotheses of [15, Theorem 2] hold, and v(+,)) ¢ Ll(nf) and (2.1)

holds. Throughout this paper, we restrict ourselves to this case by assuming
(2.2) e(t) >0 (t >0) .
Estimates for vY depend crucially on the size of ;(T,l) when

Im D(t,A) = r[A-l—e(r) - dT-2] is zero. Choose and fix tl > 0 with a(tl) > 0,

and let p = 6/tl. We showed in [2] that 6 + 0 (1 4+ ») and that the equation

(2.3) AL < 8w - aw =0

defines a continuous, strictly increasing function w{(A) on the interval

(Age=), where

-1

Ao = max{1l, [8(p) + dp-zl } .




We extend w to [1,%) if necessary by defining w(A) =p (1 <A Ay

We showed in [2, Eqs. (4.3), (4.24), (4.27)] that

1 -1 -1
(2.4) FA (T ) 28 <1aa(r ) (t >0 ,
(2.5) 100% > a(t))A a>1 ,
1 -1 -1 -1
(2.6) g AT 2T <CA W) x>1 ,

where C1 = k0[12 + (2d/a(tl))] > 12. (We shall often suppress A as in (2.5)

and (2.6).)

For A z_AO we then have

w Y Y
-y 8 (w) - 8 (w) w8 (w)
A Io lvie, 2 |at -’-(——eo ) [vew, | 3—( 60 ) olw °

This proves our first result.

THEOREM 2.1. Let (1.2) and (2.2) hold, and let vy > 0. If vY € Ll(lg5, then

t[e(t)]1+Y

(2.7) sup o)

p<TL®

<

Suppose, in particular, that a(0+) < . From (2.6) we see that

1 2 1
5 aler <w” < Fcalonn .

In this case, for Yy = %, (2.7) is equivalent to
(2.8) sup 1 < ;

that is, a is strongly positive.
To find upper bounds for vY, we first define o = o()A) to be the unique

solution of

(2.9) o_lA(o-

o



+ + . . . . X X
Then ¢ : R -+ IR 1is strictly increasing, since a(t) = t A(t) is strictly

increasing. Using (2.6), we see that for A > 1,

Therefore, since (2.5) holds,

(2.10) w < €0 and ) §_C202 (x>1) ,

with C2 = IOCi/a(tl). o can grow faster than w; for example, if

a(t) = t-l(-log t)-3/2 for small t, one shows from (2.6) and (2.9) that
Kw log w < K,A(log A)-l/z < 0 2 KA (1log A)-l/z 2K logw

where the Kj are positive constants. Note, however, that

.. O . 1
(2.11) lim e lim A(EO =0 .

Ao A->0

The next result relates ¢ to v.
THEOREM 2.2. If (1.2) holds, then

g

(2.12) ETE—I—EE;T

<sup [vit, )| < (8 +dc) (A 21D .
t>0

The proof of Theorem 2.2 contains the following:

COROLLARY 2.1. Let (1.2) hold. There exist €, K > 0 such that vo(t) >

1
K/t (0 < t < g); in particular, [ vo(t)dt = @,
0

By (2.6) and (2.10), (2.12) shows that A-l/zv(t,k) is not bounded if

/2v(t,A)

a(0+) = =, If a(0+) < =, (2.9) shows that 02 < a(0H)A, so A-l
is bounded. The latter conclusion strengthens [6, Lemma 5.2]; it thus improves

Theorems 1 and 2 of that paper by showing that one may omit the term 1log(A/A)

from the definition of u1 without changing the conclusions. Our main results,




Theorems 2.3 and 2.4, generalize this part of [6] to cases where a(0+) = «.

As in [2]), we shall need the technical hypothesis

(2.13) a(t) = b(t) + c(t), where b and c¢ each

satisfy (1.2), except that either b(0+) =0

ox c(0+) = 0 is permitted. Moreover,

[+.]
[ t—lb(t)dt <« and -c' is convex.
1

THEOREM 2.3. Suppose (1.2) and (2.2) hold, and let 0 <y <= . (i) If

(01t
o{T)

oo

(2.14) sup

’

-]; < T
2P

then supt>o t vY(t) < ew. (ii) If (2.13) holds and either

1+y-€

(2.15) sup el <o for some €, 0 < e <y ,

1 ¢ (1) _—

Epi‘f«”
or y>1 and

2+y
(2.16) sup -T—Ulizl-)-l-——< o
%p§}<m v (1)

then
(2.17) i v (t)at < =

0
When Yy = %, the following criterion is sometimes weaker than (2.15).
THEOREM 2.4. If (1.2), (2.2), and (2.13) hold, and if
1262(1)

(2.18) sup —737;7—— < ®

2Pt

R0t it “ : bt et e e i .

4




x©
then f v
0

1/z(t:)dt: < @,

For purposes of comparison, we restate our conditions for (1.5) from [2].

THEOREM A. Suppose {1.2), (2.2), and (2.13) hold. Then

(-]

(2.19) [ sup Ju(t,n)]dt <=
0 1<Ai<=

if and only if

0(T)
2.20 <
( ) L sup (D) ®
Epi‘[«»

The hypotheses in these results satisfy the following implications:
(2.21) (2.18) = (2.14) (y = %ﬂ = (2.20) = (2.16) (y > 1)

(see (2.4)). If a(0+) < «, (2.4) gives us

1 -2 -2
10 a(tl)r < 8(1) < 6a(0+)t ’

so (2.18), (2.14) (y = %), and (2.20) all are equivalent to strong positivity.
Thus while (2.15) obviously implies (2.14), the kernel a(t) = e_t provides
an example where (2.18) holds but (2.15) (y = %0 is false.

If 0 < B <1, the example a(t) = t.B satisfies (2.14) (y = 0) and
hence satisfies (2.15) for all positive Y.

By considering a certain family of piecewise linear kernels, we can
demonstrate other differences among our hypotheses. We defer the proof to
Section 7.

1
(y = 3¢ 1, 3,...), a3, and a

W

THEOREM 2.5. There are kernels al, a

2,Y 4

satisfying (1.2), (2.2), and (2.13) and such that




‘*l!-"!'-“l!l-lllll-!l"l'l.IIll'.l"ll-'.lllIIllIll.llIl-'“"‘lllllllllllll!lllﬂll

(i) a, satisfies (2.15) (y =

N

) but not (2.18).

(ii) For each fixed Y, a2 Y satisfies (2.14), but neither (2.15) nor (2.18) 3
’

nor (2.16) when vy > 1 holds.

(iii) a3 satisfies (2.20) but not (2.14) (y = %0.

{(iv) a, satisfies (2.16) (y = 1) but not (2.20).

By (2.21), Theorem 2.3, and (1.14), the sufficient condition (2.20) of
Theorem A implies (1.9), as asserted in Section 1. The following corollary
shows that Theorems 2.3 and 2.4 contain Theorem 1.1.

COROLLARY 2.2. If (1.2), (2.2), and (2.13) hold, and if

t
[ b(s)ds
(2.22) lim sup ‘OE—‘— <% ,
B0+ [ c(s)as
0

then (2.18) holds, so [by (2.21) and Theorems A and 2.3] supt>0 tvl/z(t) < o,

and (2.17) (y = %ﬁ and (2.19) are valid.




3. Statement of results for equations in H. A solution of (1.1) (or

(1.10) or (1.12)) is a continuously differentiable function vy : i+ + #H such

-~

that Ly : i+ + H is defined and continuous (in brief, vy ¢ C(i+.0)) and
T - b

(1.1) (or (1.10) or (1.12)) holds. Unless otherwise specified, integrals f

of H-valued functions are Bochner integrals in Bl((a,b), Hy; Hille and Philalips
[7, pp. 59-89] give the theory of this integral. We recall from (2, Theorem
2.1(i)] that if (1.2) holds, then g(t) is strongly continuous on H and
lowr ]l <1 (e e BN,

Our first result concerns V(t) as an operator from Dl to H. The

results of Section 2 can also be used to study V(t:)L.Y (vy ¥ %) .
THEOREM 3.1. (i) Suppose (1.2) and (2.2) hold and

()12
v (T)

< ®

(3.1) sup
Zosre

172

Then for t > 0, V(t)L is a bounded operator on H, strongly continuous

+
on R . Moreover,

(3.2) Y(t)g = -‘%:- g(t)¥ (t > 0, y € Dl).

(i) If a(0+) < ®, we may omit (2.2) and (3.1) in (i); moreover, v(t)L /2

. . =+
is strongly continuous and uniformly bounded on R .

Next we state a representation theorem for solutions of (1.10).

THEOREM 3.2. (i) Let the hypotheses of Theorem 2.3(ii) (y = %) or of Theorem

2.4 hold. Let z €D, let fe C(R, H) with £(t) ¢ D (t >0 and

1 =+ R— )
L f € BEOC(JR , HY. Assume that g € Bloc(m , Dl). Then the function f(t)

given by (1.11) is the unique solution of (1.10).

(ii) Let (1.2) hold with a(0+) < =, Let z, and f satisfy the hypotheses

of (i}, and let g € Btoc(i{"' Dl) . Then the conclusion of (i) is valid

-~

-11-




Remark. In (i) above, we need ”V(')Lrl/zll € Lioc(i?u' and by (1.14),

the conclusions of Theorems 2.3(ii) (y = %) and 2.4 imply this.

Miller [13] shows how to combine the resolvent formula for Volterra equa-
tions with fixed point theorems in order to prove global existence theorems
for nonlinear equations. We use this method and Thecrem 3.2 to obtain a result

for (1.12).

[

THEOREM 3.3. Let the hypotheses of Theorem 2.3(ii) (y = ) or of Theorem 2.4

N

hold, and let Yy € D. lLet f satisfy the hypotheses of Theorem 3.2(i) with

1, _+ o 4
§=§1+§2,§1e8(m,v), fzeB(]R,D). Let

§={§e0| ||>f|lv<a}+01

satisfy conditions (1.13). Then if u = I}y H + ||f || + || £ ll -
_— 0''D ~1 Bl(]R+,D) -2'g )

and A > 0 are sufficiently small, (1.12) has one and only one solution vy

such that |ly(t)]] <A (t e R).
~ D

A simple example illustrating Theorem 3.3 is the problem
t
(3.3) u (t,x) = [ a(t-s){u_ (s,x) + uls,x)u_(s,x))ds + F(t,x)
t o XX x

u(t,0) = u(t,m) =0 (£ > 0), ul0,x) = uy(x) .

We take H

L2(0,'rr) , Ly=-y* on U, the space of differentiable functions

~ -~ -~

y on [0,7] with y(0) = y(m) = 0, y* absolutely continuous, and y" ¢ H.
Dl consists of absolutely continuous functions which vanish at 0 and 7 and
have square integrable first derivatives.

In terms of Fourier sine series

-12-




D and 01 are characterized respectively by the conditions Zn4c§ < o and

ancz < «, and
n

gl/zy(x) = Z nc, sin nx .

n=1

Thus ]lgl/zzll = |ly'll (ye Dl). Note also that if y e D,

ly' ]2 <] n|cn|)2 < I a?y n4cz = 82| ylI?
n=1 n=1 n=1

(0 <x <m, so also [y(x) | 5_% BT ”E Y“ (0 < x < 7). Using these facts,
one easily shows that N y = yy' satisfies (1.13).
The nonlinearity uu, in (3.3) could be generalized, but our theorem does

s 2 I \
not cover such nonlinearities as ux or N.u= [h(ux)]x; N is important in

1 1

viscoelasticity theory.
MacCamy (11, 12], Dafermos and Nohel [3], and Staffans {17] have established

global existence results for (3.3) with N replaced by N, and a(o+) < e,

1
Londen’s global existence results (10] deal with (1.1) with L replaced by a

maximal monotone (nonlinear) operator and a(0+) < «, a'(0+) -, Travis and
Webb {18] prove a general local existence result for hyperbolic semilinear

equations, including (1.12) when a(0+) < =,

-13-




4. Proofs of Theorem 2.2 and Corollary 2.1. We redefine a', b', c'

where necessary to make them continuous from the left on <R*. da' denotes

the Lebesgue-Stieltjes measure on lg: We adopt the conventions

V4 y
| £() dar(e) = | Fda', [ £(t) da'(t) = | £ da’
0 (0,y) x (x,y)

(0 < x < y). For this proof we define § = o-l.
Recall that when (1.2) holds,
(4.1) lute, 1] <1 (t >0, x>0
(see (5], [2, p. 965]). Then (1.3), (4.1), and (2.10) imply
(4.2) [vit,2)| < A(td + A(t)) <0 + Ad8 < 0(1 + ac,) (0 <t <8 .

For § < t < ®», we make the change of variable s + t-s in (1.3) and

integrate by parts to obtain the identity

8 t
vit,A)) = A [ a'(s) [  ul(r,))drds
(0] t-s
t t t
+x [ a'(s) { ulr,\)drds - A(d + a(t)) [ u(s,A)ds
§ t-s 0
= Vl(t’A) + vz(tlA) + V3(tlx)
Clearly,
8
(4.3) lv (e, )] <=2 [ s a'(sids < Aa(8) =0 .
0

Since a' is monotone, we can use Fubini's Theorem to see (with A

suppressed) that




t s
] | a'(r)lu(s) - u(s-r))dras
§ &

t t
= f a'(r) f [u(s) = u(s-r)l)dsdr
é r

t t t-s
=[ a'(s)lf - [ lu(ridrds
§ s 0
1 t s
=2 v (t,A) - [ a'(s) [ u(r)drds(t > §)
2 s A 2

Therefore vz(t,k) is locally absolutely continuous in ¢, and

v t t

L2 a1 [ uls,Nds + | a'(s)[u(t,A) - ult-s,}
X ot A s

a.e. (t > §). Integration by parts then yields
v t

T2 -ue ) - a®)l +a' (@ [ uhar
t
t-$
t t
‘ » + [ 1f ur,ndarlda'(s) a.e. (t > §)
§ t-s
so
1 v
(4.4) 3 l3el £ 2a(8) - 26a'(§) - 2a(t) + ta'(t) a.e.
Since
1 av3 t
X e < a'(t) f u(s,i)ds - (d + a(t))u(t,)) a.
* 0
1 v
Y l3el £ ~ta'(t) + d + a(t) a.
Adding this to (4.4) yields
3(v2 + v3x

(4.5) % < 2a(8) - 26a'(¢) + 4 a.e.

ot

*
Suppose there exists t > § such that

-15-
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(4.6) lvie" . 0] > 8 + ac)o .

* *
Let I = [t -§, t +§], and observe that if s ¢ I,

(v, + v.)

(4.7 |vis, )| > Iv(t*,x)l -2 suplvl(r,x)l - § ess sup vy 3 (x,\)

rel rel

> (8 + dc,)o - 20 - 2A(8a(é) - §2a' (8)) - 236 ;

here (4.3), (4.4) and the absolute continuity of v, + v, have been used.

Integration by parts shows that

5
0 <[ tlaa'(t) = 2a(8) - 26a(8) + 6%a'(6) .
o]

Combining this with (4.7), we obtain

|vis,\)| > (6 + dcy)o - 4AA(8) - A8 (s € I) .

But 6 1 =0 = A(§), and since (2.10) holds,
-1
|vis,n)| > 26 (s € 1)
Thus by (4.1) and the Mean Value Theorem, (4.6) has led us to the contradiction

* * -1
2> Ju(t A - ule =6, > 6828 =2 .

Since (4.2) holds, the second inequality in (2.12) is establisgshed. It follows

that
u(t,A) > 1 - (8 +dC,)ot (t>0 ,
so u(t,)) 1% for 0 < t < [20(8 + dczn'1 Z 2T. Then by (1.2) and (1.3),
Y CI) o

@.8)  |vie, 0] > 2 am (T < t < 27

— 8(8 + dc2) 8(8 + dcz)

This proves Theorem 2.2.
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If a(0+) < », the second inequality in (2.12) is essentially contained

+ Vv, 4V in case a(0+) = » wasg

in Levin [8]. The idea of writing v = v 2 3

1
introduced by Londen {9, Lemma 2).

For Corollary 2.1, let T = T(A) as in (4.8). If t > 0 is sufficiently

small, we can find A = At such that T(A) < t < 2T(A). Then by (4.8),

vo(t) > v(t,)) > g > 1 ,

—8(8 +4dC) = 1ee(8 + dC2)2

as asserted.
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S. Proof of Theorem 2.3. Throughout this paper, the symbol M denotes

a finite positive constant, independent of A(l < A < w); the numerical value
of M can change each time M appears. We assume (1.2) and (2.2).

(2.11) and (2.12) immediately yield

(5.1) v (t) < (y>1,t>0 .

* w
Choose w = w (A) so that

*
w<T<2 and ¢(w ) = . min ¢(7)
2 Ww<T<2W

.

(NI

*
for instance, w could be the smallest such number.

We shall establish the following estimates.

- *
(5.2) lvie,n| <M+ 2801 sy
vw )
If (2.13) holds,
*6 * *92 * 2
(5.3)  |vi(t, 0| <MLL + w——-(%’-)-)Q(t) + (1 + w——“(-‘f'—))t- ] (t>1 ,
vw ) v (w)

where Q ¢ Ll(l.“)-
Before proving (5.2) and (5.3), we show that they imply the conclusions

of Theorem 2.3. Note that

2t 2t t
[ sats)as < a(t) [ s ds=3a(t) [sds < 3n(t)
t t 0

Therefore,

(5.4) A, (2t) < 4A (1) (t > 0)

Using (5.4), we can combine (2.4) and (2.6) to see that

-18-
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(5.5) l-< AB(T) < M (i w<T< 20 .
M- - 2 - -
Then if (2.14) holds, (5.2) gives us the conclusion of Theorem 2.3(i).
If vy >1 and (2.13) and (2.16) hold, we use the algebraic inequality
2
(5.6) 209 <1 + (8/0)
to deduce from (5.3) that

* 2 %
w o (w) -2
2, * t
¢ (w)

lvie, M) ] < MIQ(E) (1 + o) + 1 > .

Then by (5.5), (2.10), (2.11), and (2.16),

AV v, ] < M) + ) (t2>1 .

Since (5.1) holds, (2.17) is valid.
Now assume (2.13) and (2.15). If O <y <1, we deduce from (2.15),

(5.2), and (5.5) that
(5.7) lvie, ] <M e 1Y€ (>0 .

If p= (1-y)/(l-y+¢), then 0 <p <1 and p(y-¢) + (1-p) =y, so (2.11),

(2.12), and (5.7) tell us that
(5.8) vt ] = Jvie, 0[PP YR (e > 0

if y < 1. We conclude from (5.1) and (5.8) that
1

(5.9) / v (£)dt < = if (2.15) holds .
0

Choose 6§ < e/(y-€), 0 <8 <1. If 1<t® <1, (2.15), (5.2), and

(5.5) imply that
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* l4y-¢ * €
(5.10) lvie, 0] < m + &8 —_(w)y,77€ LG;
HAw ) t
<me T
1t A€ < t%, then A7V {178 o0 (2.15), (5.3), and (5.5) yield

2
* - - -
g1+ e(w*)) 22Y-2€,1-6

Y-€
fve, )] < M[AT So(r) + YT

*
o w ) t2A
Since Yy - € <¢/8, another application of (2.15) shows that

lvie,. 0] < mYoce) + £ 14 TUPESE

This inequality, taken together with (5.9) and (5.10), gives us (2.17).
We have shown that Theorem 2.3 is a consequence of (5.2) and (5.3), which
we prove next.

When (1.2) and (2.2) hold, one has the inversion formula

o

f eiTt (TD'(;) - D(T))dT}
0 D (tT,A)

(5.11) mv(t,)) = Re{fi (£t >0 ,

where the integral is absolutely convergent at both T =0 and 1 = =,
This was established in (1].
The next lemmas will enable us to estimate D and D'.

LEMMA 5.1. If (1.2) holds, then
(5.12) e(t) > A - 3 (THT (x> 0)

Proof. Two integrations by parts yield
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(1) = T-z f (1 ~ cos tt)da'(t)
0
1/t
> % / t2da' (t)
0
1/t
3%—! t2 - 1t3)aar (v)
0
= %[A(r'l) - 3TA1(T-1)] + hl—r a(th .

Here we have used 1 - cos x > :ll- x2 (0 < x < 1) and the fact that da'
a

is a positive measure. Since 0, the lemma is proved.

LEMMA 5.2. If (1.2) holds, then

2

(5.13) o2 (1) + 59 < M|p(t,n |2 1220

—~

1

(5.14) A(r'l) imin(r,x)l (1 ¢ [% Pr 5 w] V [2w,»))

Proof. [2, Lemma 5.2] states that (1.2) implies

(5.15) l'r-(u| < MAID(T,A)I (t i%w) ’
(5.16) -[Al('[-l) < MlD(T,)\)I (%‘ p<T f_%‘w) -

In Section 8 below, we give a corrected proof of this lemma.

For 1 Z.%“" (5.13) is a trivial consequence of (5.15). (2.6) and (5.15)
show that
1 -1 1 -1 1
(5.17) 1o rAl(r ) < 10 tAl(w ) < > /A < (t-w)/A
< M|p(t, 0] (t > 2w)

Thus if 1 € [%p, %w] V [2w,»), (5.12), (5.16), and (5.17) imply that

|




A < 2000 + 3, (rTh < Ml |

as asserted in (5.14).

w 1 1
SRICUA Q) 2 GAD)

By (5.14), this implies (5.13) for such 1, and our proof is complete.

Recall from [2, Lemma 4.1] that when (1.2) holds we have
(5.18) 277%™ < Ao <4ac™h, (a0 <4m (tThH (>0 .

We now deduce (5.2) from (5.11). If 4 > 0, (5.18) shows that

|tp' (1) - D(1)] < Mot 0 <t<p) .
while (2.2) gives
(5.19) ID(t, 0] > max{g(t), (d - t2/t} > I/Mr (0 < T < p)
Thus
(5.20) p/2 |tp' (1) - p(n)] dt < M

0 Alp(t,n) |2 -

On the other hand, if d = 0, (5.18) implies that |tD'(T) - D(1)| < MA(T
and
(5.21) DT, )] z_max{2-3/2A(r~l) -1, v(0)}

so (5.20) is again valid.

By (2.10), (5.18), and (5.14),
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w
= 2C. o . _ 2C.0 _
(5.22) 2o, ) e Dg"l ar <m [ ' acr"hHar
p/2 2w )\ID(T,)\)l p/2 AAz(‘l'-l)
Mo
<« —2 =M .
- AA(o-l)

Next we use (5.18) and (5.13) to obtain

' _ ® -1
er (1) D(T)l at < MA f A(t )

2 2
2c;0 AD(T, )| 2c0 T

drt

(5.23)

<mahHot <m

Before estimating the final piece in (5.11), note that (5.18) implies
-1 * * * 1
(5.24) MA(T ™) <v(w) + w B8(w) (Fwt<2w .

Now (5.13), (5.18), and (5.24) give us

2w . 2w
(5.25) [ Jto' (1) - Dgr)l ar < mah) | _ gr _
w Alp(t,a | 0 Dew )17 + |1
2 2
-1 * *
< MA(Zt ) < ML+ w e(ﬁ ))
olw ) Vlw )

Thus from (5.22), (5.23), and (5.25) we obtain (5.2).

Next we turn to (5.3). Assume (2.13) in addition to (1.2) and (2.2),

and write (5.11) as

3

(5.26) v(t,)) = Re{d v (t) + iX 2v (t) + A v (6) - v, (£,}) - v, (£,0)}

where (these vj are unrelated to those of Section 4)
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P, .
tvl(t) = eth %—ﬂ—)- dr
0] D (T1)
P itt '
tv, (t) = T; 1 - 2TDD(T()T)]dr
0 D' (1)
P 2
tv3(t) = e1Tt —%1—— dat
0] D™ (1)
0 13D (t,2)
iTt t ! 2 1 1
tav, (t,A) = [ " + = + at
4 o A2D3(1)D(T,A) D(T) D(T,)\) D(T,})
thv (£, = i eiTt(TD'(;\ - D(T))dT
p D (T,A)
We shall show that
* * *62 *
(5.27) |v (e, 0] + [vg(e ] <Ml + CICACIDE P 95——§9—%} (t>1) ,
¢(w ) v (w)t
where
i -2 -2 .t -1
' q(t) =t “+t ° [ b(s)ds +t "b(t) - b'(t) (t > 1)
0

We know from [2, p. 972) that q € Ll(l,m). Moreover, from [15, Theorem 2]

and the fact that

o

Re [ e %fa(t)at >0  (Re s > 0, 5 # 0)
0
under our hypotheses [4], it follows that v(°*,}A) € Ll(nﬁﬁ. Then by (5.26)

and (5.27), each of wv., v_, Vv belongs to Ll(l,m). (5.3) now follows

1 2 3
from (5.26) and (5.27) with Q = |v1| + |v2| + |v3| + g. We have reduced
(5.3) to (5.27).
. iu . iu
Let J(u) = iu(l - e ) - 2(1 -~ iu - e ) and recall from [2, (4.9)]

that
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r=*———*———————f—————————*——————————————::-nwu-r———‘

b'(1) = v [ J(-15)db’(s)
0
For t, Tt > 0 define
0 -3t
B (t,1) =1~ [ J(-1s)db'(s)
0
8°(t,1) = 1> [ J(-1s)db’ (s)

t

Alt,1) = Bo(t,r) + 5'(?) + icilr'2 = D'

"-..l.-.-".-l'l""'—-Illll!wl-—--ul!unt!l

(t > 0)

(5.28) (1) - B (t,7)
In [2, Lemma 5.1] we proved by direct estimates that c e Csz+),
38%/31 ¢ c(®R* x ®") ana
. 1/t 5
(5.29) le"(1)| < 6000 [  s“c(s)ds (t >0 ,
0
(5.30) 18”(t, 1) | < 4017 2(b(t) - tb'(£)) (t¢,T >0) ,
i 0 ot
| (5.31) l%ﬁ;«t,r) < 50012 [ b(s)ds (t,T >0 ,
0
0 1/t
(5.32) [87(t, 1)) <40 [  sb(s)as (t,T >0 ,
0
. 1/t
(5.33) lc' ()| <40 [ sc(s)ds (t > 0)
0
Write v4 = v41 + v42, where
o . 3 -1
t, TIA(t,T) + ix ) 2 1 1
(5.34) tAv, (t,A) = [ e*TF(( ) ( + ) + jar
41 o A2D3(T)D(T,A) D(T) D(t,A) D(T,))
(5.35) eV (E,) = IZiTt[ T3Bm(t,T) ( 2, 1 )1dT
: 42"’ D(T) = D(T,A)

o A% (tp(t,n
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Likewise let vg = V5l + V52. where

p D (1,)
«© i [
(5.37) tkvsz(tnl) = ! e Tt Tg (t,0) ar .
[ D (1,))

Now integrate by parts in (5.34) and (5.36) to obtain

3 -1
1.2 ipt{% [A(t,p) + i) 7] 2 1 1l
(5.38) iAt'v, . (t,L) =e ( + ) + }
41 12D3(D)D(p,k) D(p) D(p,A) D(p,A)
2 . =1 2

11 peirt{?r [Alt,T) + 4id 71 + 178 (£, D) : 2 ,_1 .
4

D(0+) XZ 0 D3(T)D(T,A) D(T) D(t,A)

At 0 + 371130 (10D(,A) + D(OID_(1,M)]
- [
p? (1D (x, 1)

2 1
(v T DlL,N!

s, + il
| D> (1)D(1,3)

[ + -

2
20" (1) DI(T,A)1 A'D_(1,1)

2 2 ] 2 at .
D7(T) D (1,)) D (T,A)

(5.39)

iAt2v51(t,A) - olirt ‘pA(tff) - Dlp),
D (p,A)

+

® A(t,T) + tA _(t,T1) - D'(T) D _(1,A) (1A(t,T) - D(1))
f ent[ T - 2( X \] dar .
P

Dz(t,A) Da(r,k) /

Here (5.18), (5.32), and (5.33) have been used to simplify the boundary terms.
In (5.38), 1/D(0+) is zero unless d =0 and a ¢ Ll(lgW. Our estimates
(5.18), (5.19), (5.21) and (5.40) below show that the integrals in (5.38) con-
verge absolutely.

By (5.18),
-1

A (1’1) +ar s+

DT(T,A) 1

<M .
lper, 0|

D2 (1,1)




If 4 > 0, (5.19) shows that

(5.40)

0

If d = 0, we recall from [15, (1.21)] that
-1
1 Al('l’ )

o a%¢«"Y

dt < »

Thus by (5.21), (5.40) holds in this case as well. It is now a straightforward

matter to use (5.18), (5.19), (5.21), (5.40), and (5.29) through (5.33) to

estimate the terms in (5.35) and (5.38) and deduce

(5.41) lv (e | < Mate) (t>1) .

We turn now to V.. The following estimates, direct consequences of (2.6),

(5.18), and (5.29) through (5.33), will be used without explicit mention for

estimates of the numerators.

lace, 0| + lTAr(t,T)I + |p (0} f_M[Al(T-l) + tzq(t)‘t-]‘] (t>1, 1 3_% 0)
ot n | < w7 < wTlacTh (t > 20
22]8%(t, 1) | < Meq(t) (t >1, 1> 0)
(5.42)  t|ace,n] + [D(0] < MAGCT) (t>1, 1230
lace, | + |1a_e, 0] + D] < u L+ T e2qee)) (t>1, 7 3-% w)
ot < w7t (1> 7w
We recall as well that
(5.43) a™h) > a/2c,0) > AT /20, = 0/2C A (T £ 2)0)
and
-27-




warh 2 ah 2 ate)

We use Lemma 5.2 and its simple consequence

(5.44) "t < Mlp(r, 0| (2w < T < ®)
to get
w/2 2¢)0 lace, 1) + 18 _(t,T) - D'(1)|
(5.45) [+ 3
0/2 2w Alp(t, 0 |
M 2C10 Al('r_l) + r-ltzq(t)
=3/ 2, -1 dr
p/2 AT(t )
2C.0
1 2
<3/ S e
p/2 TA(T ) T2 (1 7)

bl xa(t)) -1

2
Mo [1 i g(t)] < w2qt)
A(o ™)

and (here (2.6) is used as well)

dt

dz

® lace, v + T _(£,7) - D' (1) |
(5.46) J 5 at
2C10 AID(T'A)I
o -1 -1.2
i%f A+ T 1:2q(t) dt < Mtzq(t)
2C10 (t/X)
Similarly,
w2 19 e IDT(r.A)IITA(t,r) - (1) |
(5.47) / + f + f 3
p/2 2w 2¢;0 DIE N
<a+aaeh [ Hew
2c.o T

1




On [% w, 2w] we use (5.13) to estimate the denominator. Thir yields

20 |A(t,T) + TA_(t,T) - D'(1)]
T
dart

(5.48) 3
w/2 Alpr,n |

2w -1 -1.2
1MAI A + T "t q(t)

dt
w2 e + |t-u|?

©

<M1+ tiqn™h ds

0 I)\sp(w*)]z + s2

2 -1 * *
< Mt g(t)*Aw thzq(t) w 6((:: ) .
Ael(w ) ¢ (w )

The last inequality above used (2.5) and (5.5). Similarly, using (5.24),

(5.25), and (5.6), we obtain

2w IDT(T,A)“‘IA(t,T) - D(1) | 2w (20 Dar
(5.49) | 3 ar <M | 5 5373
w/2 A|D(T,0) | w/2 [Oew ) + |1-0]]
‘ -1 * * * *
<MA(Zm ) <M e w ) + w 8(w )]0 (w )
— 2 * - 2 *
A (w ) v (w )
* * 2 x * 2 &
=M(6(w*)+wg(?);iu(l+wg(?)) .
v(w ) ¢ (w) ¢ (w)

Thus the representation (5.39), along with the estimates (5.45) through

(5.49), gives us

te * ) *62( *
(5.50) lvg (e | < migey o+ &2y 4 72 0 3 L0 )y
vw) ¢ (w)

As in (5.45) through (5.48), we derive
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w/2 1 o
(5.51) o +f  +f 1 lLB—‘—t—"’-l-dr < Mta(t) .
YT 2c,0 Alptr, |2

Again we use (5.13) on [%-w, 2w)}. This gives us

2w
(5.52) f M at < Bl o gy @ e(w I
w/2 )\ID(T )\)l W \o(m ) ¢(m )

where the last inequality invokes (2.5) and (5.5).

Then (5.37), (5.51), and (5.52) imply

* *
(5.53) lve, ()] < Mate) 11 + = e(f L .

¢(w)

But Ve = Vg + Vgyr SO (5.41), (5.50), and (5.53) give us (5.27).

in turn, gives us (5.3).

This completes the proof of Theorem 2.3.
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6. Proofs of Theorem 2.4 and Corollary 2.2. To prove Theorem 2.4 we

need (6.1), (6.2), and (6.3) below, which are consequences of (2.18), (5.18),

and (5.24).

2, -1 - * 12 * w2
(6.1) AL ) oy lal/on]® oyt B8NS,

- < <§ w<T < w) .
vlw) vlw) ew')
Thus,
0w’ a(L/w) (2/w) M
w W a w A w
(6.2) l+—W==< 2 <M <
o) o) el — M2/w
C.M
M 1 -1
< < — < Mio .
A(l/Clo) Alo 1)

Furthermore, by (2.21), (2.18) implies (2.20), so

(6.3) 1+

* 7 * ! .

Comparing (6.2) and (6.3) with (5.3) shows that
1

Lompwn?, a>1,e>1 .

(6.4) lvit, )| < Mo(t) G

Using (5.2) and (6.2) it follows that

1 -1

(6.5) [vit, M| < Mo "t . (A>1, t>0) .

Combining (2.12) and (6.5) yields
1 1

< moZ (a0~ e 2 = mie”

(L

1,1 L
(6.6) lvie, M| = [vie,n |2 2 2

(A>1,0<t<1) .

Theorem 2.4 is an easy consequence of (6.4) and (6.6).
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then [14, Corollaries 2.1 and

If a(0+) < =,

Proof of Corollary 2.2.

2.2] imply that ¢ is strongly positive. Then a is strongly positive. As

noted in Section 2, strong positivity implies (2.18) (which in turn implies

(2.14)) in this case, so our assertion follows from Theorems 2.3(i) and 2.4.
If a(0+) = », we follow the proof of [2, Cor. 2.1{ii)] for this case.

There we invoked [16, Thm. 2(iii)]) to obtain

(6.7) et > 2 a%Th (t > max{o,x ]

88 0
(a, B, xo are positive constants whose values are irrelevant here) at an
intermediate stage of the proof. Since A(r-l) > TAl(T-l) and (2.4) holds,

we deduce from (6.7) that

2

_a 16(1)] (t Zmax{p,xgl})

(
862 12

glt) >

But ¢ and ©6 are continuous, so (2.18) holds, and our conclusions follow

as before. This completes the proof.
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7. Proof of Theorem 2.5. Each example has the form

-]

(7.1) a(t) = § c.b (t)
oo Kk

where

Bk
bk(t) =(1-2 t)Xk(t) H

k
xk is the characteristic function of the interval [O, 2_8 ] and B is

an integer greater than or equal to 2.

X
Each ¢, will be positive and we shall have 2A(x) = 2‘;::0 ckz's < w;

then (1.2) and (2.2) hold. (2.13) is clear because a(%) = 0.

For any kernel of the form (7.1),

k
o0 k -8
(7.2) ety = J csz (1 coz 2 " 1)
k=0 T
Note that
(7.3) % u2 <1-=-cosucx< % u2 (0 <u <l
Therefore,
C m+l c m m+l }
(7.4) ey > L -8 ml o OB 2B
41 |
i
8" %
On the other hand, if we let 1= 2% (2n), (7.2) and (7.3) show that !
®© Kk
(7.5) e(t) <2 7 2B
n 2 k
k=n+l

From (2.4) we get
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-g*
1 m 1/t Bk ® 2 8k
(7.6) j30m =< ] o ta-2vat+ [ ¢ [ t1-2")a
k=0 0 k=m+1 0
n Lod k m m+1
i—‘lz ) Ck+% ) f-‘k2-2[3 2 <1<,
2T k=0 k=m+1
4 l/Tn 1 4
(7.7) se(r) > ] c [ Ped-tvar>-= ] c, -
k=0 o] 6T k=0
n
Now we need only choose B and ), appropriately.
2k-2
For al, let B =2, ck = k2 , 0 <€ < 1/14. By (7.4), if
m m+1
22 <t<2?
3 m
-=(2)
m+l 2 3/2
v(T) > == 2 > log,log, T/47
Since (7.6) holds and
(7.8) (x+y) * < 2" + 2p* {x,y,r > 0) ,
|
. i-e m 1—e k-2 € m m+l
- -7
%5 [9(1)]2 < (%r 2 ) ck)2 + (% k2 (2) )2 (22 <1t 122 )
k=0 k=m+1

The first sum on the right is dominated by Cn the second sum is dominated

by its first term. Thus

l-e 1'6 m—ll-e
1 2 -2 2 =7(2) 2
150 (CIGON! < (t cm) + ((m+1)2 )
21 ¢
-— m m m+l
< (1 + 109210921)3/2(r 8 4 + 2-5(2) ) (22 <T < 22 )

. 1
Since 6 and ¢ are continuous, we deduce that (2.15) holds with y = 5

by (7.5) and (7.7),




n-1
elt) < (n+1)273(2) ,

900 1202 (1 ) > B—
n n -

sO Tiez(rn)/v(rn) + o (n+o), and (2.18) does not hold.

(14 ¥
For a. , let B=1+2y,c, =277 Note that
2,y k
. 2_2Bk+1 .
k+1 < 2-3y <1, k+1 5 27 >1 .
k c
o] 2-28 k
k
Therefore (7.6) implies
c (m+1) m m+1
m -28 B B
(7.9) 8(T) < K(Y) [ +c .2 G

T
for some number K(y) < «. Using (7.4), (7.8), and (7.9), we get

“2(y+1) + 1 ley.(-1-2y) ™
T c 2
m+l + m+1l
T-(1+27) (m+1)

c -B
m+l cm+12

T91+Y(T)
v(T1)

< 21+YK(Y)

m+1 m+1]
21+YK(Y)[1 + 2Y[(l+y) -2(1+2y) ]

I A

m m+1l
B 1< 2P

22 % () (2 )

| A

Thus (2.14) holds. On the other hand, (7.5) and (7.7) yield

]
(7.10) ety <t e e 3, 30 801 >t
n -2 -Y n+l 71 n — nn
1-2 n
From (7.10), our final conclusions about a2 y follow easily.
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For a; we take B = 2, ¢ = Zk, and for a, we take B = 2, ¢, = 1.
The estimates are similar to those given above, so we omit them. Example a

appeared in [2].
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8. A lemma. In this section we prove

LEMMA 8.1. If (1.2) holds, then

(8.1) |D(T,2) ] iMTAl(T—l) (% p<T i%‘*’) ’
=W 1
(8.2) o] > M5 (tzgw

This is the same as [2, Lemma 5.2), but our proof in [2] contains an error.
Proof. When % p<T<p=w or T>uw, the proof in [2] is valid,
so we exclude those cases here. [2, (5.11)] is not correct when T < w.

When we integrate the inequality

1/t
-0 (1) > ~ f r3a(r)dr > 1 a(t l)
-5 - 3
0 80T
[2, (4.4)) from T to w, we obtain
1/w
(8.3) |Im D(t,A) | > %ﬂ—)— [ Pamar
0
T /T 1
+ 160 ra(r)dr (p < w, 3P < T < w
1/w
Since
2/w 3 1l/w 3
f rra{r)dr < 15 f r a(r)dr ,
l/w 0
we have
1l/w 3 2/w 3 1/t 3 1
(8.4) 16 [ r’a(r)dr > | r-a(r)dr > / rra(rjdr (1 > 5 w)
0 0 0

By (8.3) and (8.4),

1/t 1/t |
(8.5) lIm D(T,A)] > Iil_%%éliﬂl f r3a(r)dr + I%E f ra(r)dr ‘

0 1/w
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1 Do
for p <w, 7w < T <w. Except for a constant,this is the same as

[2, (5.11)] for these T, w,

so the remainder of the proof of (8.2) as given

in [2] is valid. We need only establish (8.1).

Note that

(8.6) ID(t, 2| > e(t) > M 3_MrAl(r'l) (% pLT 2R

If % w < p, then (8.6) implies (8.1). Otherwise we consider two cases.

Case 1. If p <t < %

of Lemma 5.1,

(8.7) |Re D(1,2) |

| v

2
2

Thus (8.3) and (8.7) imply
(8.8) Y2 |p(t, M) |
Case 2. If p < T < %

w

and A(w_l) 3_6wAl(w-l), then, as in the proof

1/t 2

¢ (1) 3_% [ tfaa'(r)
0

o=

N

|

v

>

w

1/w 2
[ tfaa'(v)
0
[A(w-l) - 3mA1(w_l)j + gz a(w-l)
-1 1 -1 1 -1
A{w 7) 27 wAl(w ) > 2 TAl(m )
T fl/T T fl/w
> — ra(r)dr + — ra(r)dr
160 1/ 4 0
T -1 .
160 Al(T } in Case 1

and A(w_l) < 6wA (m-l), then let
1
1/w

g(t) = (6wt - 1l)a(t). In Case 2, then, [ g(t)at > o.

It is easy to see that

that

0

(6wt)ng(t) > g(t) (¢t >0, n=1,2), so we conclude
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n 1/&) n
(8.9) (6} [ tig(t)at >0  (n=1,2) .
0
From (8.9) it follows that

1/w 1/w

(8.10) 360® [ tla(mat > [ ta(var .
0 ¢
Now (8.3) implies
2 1l/w 1/t
(8.11) |Im D(T, )] > L / r3a(r)dr + ra(r)dr (p £ 1T < 1 w)
— 40 160 - -2
0 1/w
(8.10) and (8.11) combine to yield
1/w 1/t
(8.12) |Im D(1 k)l > —= f ra(r)dr + — f ra(r)dr
R — 1440 0 160 1/

T -1 .
> 1340 Al(T ) in Case 2.

Finally, (8.6), (8.8), and (8.12) establish (8.1) in all cases. This completes

the proof of Lemma 8.1.
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9. Proofs of Theorems 3.1, 3.2, and 3.3. For Theorem 3.1(i), first

observe that Theorem 2.3(i) implies

-lAl/Z

(9.1) |vie, )] < me (t >0 .

/2

By (1.14), Y(t)g.-.l is bounded, for each t > 0. Moreover, if t, s > 0

and y € H,

=

-1/2 2
72yl

llvee) - ves)in = [ e - v ey y

1

Since wv(t,)) 1is continuous in t and (9.1) holds, Lebesgue's Dominated

1/2 1/

Convergence Theorem shows that Y(t)g_ Yy > Y(S)E- ZX (t »>s). v(t,))

is differentiable in t, so the Mean Value Theorem implies

(9.2) In"ucesn) - vty - nv(o)y]|?

- fm v{t+n,A) - v(t,}) 2
1

172 MEY, Y

(y € Dl), where 1n = n(t,A,h) is between 0 and h. For vy ¢ Dl'
Ad(Ely, y) 1is a finite measure, so by (9.1) and dominated convergence, the
integral in (9.2) tends to zero as h - 0. Therefore U(t)y 1is differentiable

(t > 0) and (3.1) holds. This proves Theorem 3.1(1i).

Under the hypotheses of Theorem 3.1(ii),

(9.3) sup |v(t,A)| < Mo < Ma(0+) 2/ 2

>0

(see Theorem 2.2 and the remarks following it). Using (9.3) in place of (9.1),

—+
we can argue as above and prove the results on the closed interval R . This

completes the proof of Theorem 3.1.




Proof of Theorem 3.2. To simplify formulas, we take d = 0, since

this does not change the argument. For (i), the uniqueness assertion and

the special case g = 0 are just Theorem 2.1(ii) of [2]. Therefore it

~

suffices to establish (1.11) when f = 0 and z0 = 0.

Let n be a positive integer, and let 9, = En ds
t
h (t) =f a(t-s)g _(s)ds .
~n 0 ~n

=+ . .
Then g ¢ Bzoc(]R »H). Since HE.I::nH <n and Lg =E g is measurable,

95 belongs to B;oc(i+' D). Therefore hn : R O+ D is continuous. By

-~

{2, Theorem 2.1], the unique solution of

t
2'(t) + [ a(t-s)(Lz(s) + g (s)}ds =0, z(0) =0 ,
z A o J -2 o
is
t
z () = -{) U(t-s)h_(s)ds
-+
Then 2z € C(R ;D) and
t s ’
(9.4) z (t) = [ [ a(s-r)[Lz (r) + g_(r)]drds (t > 0) .
~n o 0 ~~n n -

But for y_ ¢ D, y(t) = g(t)go is the solution of

20
t
y' () +f a(t~s)Ly(s)ds= 0, y(0) = Yo
0 2, 2
(2, Theorem 2.1(i)]. Since L is closed and (3.1) holds, this means (see

Theorem 3.1)




r'—’rt': - - i ™ e R b e m S

- -1 t
L 1Y(t)¥o = V(OIL Ty, = - / a(t-s)U(s)y ds
0

t
= - fo g(t-S)a(s)yods (¥y € D)

Therefore

t -1
[ vit-s)L g, (s)ds
0

t t-s

= - f [f a(t—s-r)g(r)gn(s)dr]ds
0 0
t t-r

=-[ ux) [ a(t-r-s)g (s)ds ar
0 o

= zn(t) .

Since z, = g = 0, (1.11) reduces to

0 <
t
~1
! co) = | v geas
0
but Y(')E.-l/2 is strongly continuous on R" and ”Y(-)g-l/z” € Ll(]R+),

while g ¢ B:oc(i+,01). Therefore

1/2,,1/2

Y(t_s)y-lg(s) and Py(t-s)g_lg(s) = y(t—s)g- g(s)

are strongly measurable in s (a modified version of [2, Lemma 3.1] shows

this), and standard estimates show that zZe€ C(i+, D). fThen by (1.14),

1/2H 1/2

t
leize) - z (01 < [ [fvie=e)L i “tg(s) - g (s)iflas
0

t

1/2
<] vt ey

g(t~s) ||ds




-

But gn + I strongly (n * «), and the integrand here is dominated by the

Ll function

1/2
w(s) = v, . (s) ess sup ||L | .
172 o<r<t !
so
T
lutzce) -z (0)1]] < [ wis)as O<t<T<w® ,
0
Lz (t) > Lz(t) in H (n +o, £t >0)

Similarly, gn(t) +z(t) {(n>®) and z - gn is bounded on finite intervals.

Therefore we can let n -+ « in (9.4), using dominated convergence, and deduce

that

t s
z(t) = [ [ a(s-r)IL z(r) + g(r))dr ds .
00

Therefore g(t) i a solution of (1.10) with go = g = 9, as asserted. For

(ii), the hypotheses imply vl/2(t) < M (see Theorem 2.2), so the proof of
(i) can be repeated with minor changes. This proves Theorem 3.2.

Proof of Theorem 3.3. By (4.1), Theorem A of Section 2, and the fact that

(2.14) (y =

N

) implies (2.21), our hypotheses yield

-]

(9.5) luw ] <1 @>0, [ Jluw] at 2 v <o
D 0 D

Let T : g + z be the operator defined formally by the right-hand side

of (1.11) with Yo in place of Zy» but interpret the integrals as Bochner

integrals in Bl((O,t),P). If g e Bm(Eﬁ,Dl), Theorem 3.2(i) shows that

Tg ¢ C(R',D). Moreover, by (9.5) and (1.14),




Irgce) iy < Nyolly + H£ 1l + vl ]l o
21 lp = pllp 2l 2 9 “2llg= 2t 0y

[ ]

+ llgll v, ,.(B)at  (t e R .
BTN o 1/2
With K=1+ v + ||v1/2||L1,
Irg@lly < xw+llgll ., ) (e ®)
R ,Dl)

Referring to our hypotheses, we choose A, O < A < a, so small that

K e(8) < L

37 and choose L < A/2K. The TN maps the ball

s, =ty | llvwlly<a te R}

in the Banach space C(iﬁ+,0) into itself. y € S is a fixed point of TN

A
if and only if y is a solution of (1.12) in SA'
We complete the proof by showing that ™ is a contraction on S A For
Elr EZ € SAI

Iz, (8) - mz,(0) [ =

t
-1l
Hj;) V(t-s)L " [Nz, (s) —Ngz(s)]dsuv

< K|[nz, - Nz ||
~-1 ==27g (R*,0))

< K €(4) ||z -z||°°
1 2 B (If,v)

<z llzy -2zl _
2 7-1 20w/

1nis proves Theorem 3.3
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